

Facultad de Ingeniería - Universidad Nacional de Cuyo P1- PROGRAMA DE ASIGNATURA						
Asignatura:	Realidad Virtual					
Profesor Titular:	César Omar Aranda					
Carrera:	Ingeniería en Mecatrónica					
Año: 2015	Semestre: 2	Horas Semestre: 60	Horas Semana: 4			

OBJETIVOS

Objetivos conceptuales:

- Comprender los conceptos fundamentales asociados a los ambientes virtuales
- Conocer el estado del arte y las herramientas disponibles para crear, explorar y manipular ambientes de realidad mixta.

Objetivos procedimentales:

- Utilizar diferentes herramientas que permitan la creación, exploración y manipulación de ambientes de realidad mixta.
- Obtener productos software que operen en realidad mixta, aprovechando las particularidades de diferentes dispositivos de IHM.

Objetivos actitudinales:

- Adquirir confianza en las propias posibilidades de comprender y resolver problemas.
- Ampliar su capacidad para trabajar de manera autónoma y grupal.
- Mejorar sus habilidades de investigación así como su visión crítica y autocrítica de problemas y soluciones.

CONTENIDOS

UNIDAD 1: INTRODUCCIÓN AL CONTINUUM DE REALIDADES

1.A. Generalidades

Canales sensoriales. Presencia e inmersión mental.

Realidad virtual, realidad aumentada, virtualidad mejorada. Realidad Mixta.

Inmersión, interacción e imaginación. Telepresencia.

Estado del Arte. Limitaciones. Tendencias.

Los factores humanos: los problemas de la evaluación

1.B. Aplicación

Aplicaciones de la RV en diferentes ámbitos (medicina, educación, arte y diseño, entretenimiento, militares, investigación, etc.). Ejemplos.

Teleoperación. Investigación. Simulación. Beneficios. Limitaciones.

UNIDAD 2: INFRAESTRUCTURA PARA LA REALIDAD VIRTUAL

2.A. Modelos de Arquitecturas

Modelo general de Arquitectura Orientada a la Realidad Virtual. Motor virtual. Arquitecturas Inmersivas y No Inmersivas.

Arquitecturas basadas en computadoras personales, en estaciones de trabajo y en sistemas distribuidos. Sistemas monousuario y multiusuario o cooperativos.

Perspectiva de modelos, aspectos estructurales y funcionales. Ejemplos.

2.B. Elementos componentes

Niveles de sincronización. Protocolos y topologías habituales. Ejemplos.

Factores condicionantes. Alternativas de solución.

Proceso de desarrollo de dispositivos de IHM y ambientes virtuales. Fases. Hardware y software. Alternativas de desarrollo.

UNIDAD 3: DISPOSITIVOS DE ENTRADA Y SALIDA

3.A. Conceptos generales

Sistemas de seguimiento y de realimentación del usuario.

Objetos virtuales y 6 grados de libertad.

▶ 2015 AÑO DEL BICENTENARIO DEL CONGRESO DE LOS PUEBLOS LIBRES

Visión humana y visión artificial. Audición humana.

3.B. Dispositivos de entrada/salida

Dispositivos de entrada de datos. Dispositivos de seguimiento (trackers).

Dispositivos de navegación. Dispositivos gestuales.

Dispositivos de salida de datos. Pantallas gráficas. Sonido 3D.

Interfaces hápticas.

Ejemplos. Análisis de aspectos estructurales y funcionales.

3.C. Dispositivos combinados

Dispositivos mixtos de entrada y salida.

Interfaces hombre-máquina inmersivas. Interfaces multimodales.

Ejemplos. Análisis de aspectos estructurales y funcionales.

UNIDAD 4: SOFTWARE ORIENTADO A LA REALIDAD VIRTUAL

4.A. Software

Lenguajes y bibliotecas de funciones de programación. Análisis de Java, Processing, OpenGL/JOGL. Análisis de VRML, X3D y WebGL. Comparativa OpenGL vs. Direct3D.

Entornos integrados de desarrollo, especializados y genéricos.

Aplicaciones, frameworks y toolkits aplicables al trabajo con Mundos Virtuales.

Ejemplos. Aplicabilidad. Ventajas y desventajas. Ejercitación.

4.B. Modelado y programación

Contexto gráfico. Primitivas gráficas. Representación y transformación de objetos gráficos.

Conceptos sobre modelado de superficies y mundos. Grafo de escena. Layout, Nodos. Propiedades de la escena y de los objetos: geometría, ubicación, apariencia (material, textura), iluminación, vistas.

Comportamiento dinámico: deformaciones geométrica y física, detección de colisión y respuesta, animación de objetos y personajes.

Interacción con dispositivos de E/S. Limitaciones.

Ejemplos de aplicación en Realidad Virtual y Realidad Aumentada. Ejercitación.

UNIDAD 5: ASPECTOS GEOMÉTRICOS DE LA REALIDAD VIRTUAL

5.A. Curvas y superficies en el plano

Manipulación de Gráficos y Representaciones Geométricas en 2D. Aplicabilidad.

Transformaciones geométricas. Clasificación. Simetría. Traslación. Giro. Homotecia. Coordenadas homogéneas y representación matricial. Composición.

Geometría fractal. Elementos de geometría diferencial.

Geometría algorítmica. Ejemplos. Características del modelado y la programación usando curvas y superficies paramétricas y no paramétricas. Ejercitación.

5.B. Curvas y superficies en el espacio

Manipulación de Gráficos y Representaciones Geométricas en 3D.

Transformaciones tridimensionales afines y proyectivas. Renderizado. Representación matricial en 3 dimensiones.

Aplicabilidad. Ejemplos. Ejercitación.

METODOLOGÍA DE ENSEÑANZA

Se considera que cada clase es eminentemente teórico-práctica, aplicando en forma inmediata, y según recursos y herramientas disponibles, los conceptos expresados teóricamente, por lo que el trabajo, en general, responderá al de un aula-taller.

Con clases teóricas sobre pizarra, elementos multimediales, y/o ambientes colaborativos en red de computadoras para la presentación de conceptos, teorías y ejemplos de aplicación (con distinto nivel de completitud y complejidad, según corresponda)

Se plantean trabajos prácticos, casos de estudio con investigación y casos de extensión.

Algunos de ellos tienen carácter obligatorio (se solicita y califica tanto su desarrollo como su presentación) y otros opcionales (son sólo a efectos de ejercitación de los alumnos, de fijación de conceptos o discusión).

Según las características del alumnado y de la actividad los trabajos se distribuyen para ser llevados adelante de manera individual y/o grupal.

El seguimiento de los alumnos se realiza en base al registro de asistencia, cumplimiento y participación. Cada clase cuenta, normalmente, con tres momentos sucesivos:

- ✓ <u>El momento introductorio</u>: Donde se expone teóricamente un tema nuevo. La explicación siempre debe incluir un ejemplo simple resuelto.
- ✓ <u>El momento elaborativo</u>: El alumno elabora la solución a un problema acorde al tema explicado anteriormente. Acá es donde surgen las principales dudas que, de resolverse inmediatamente, generan un conocimiento afianzado en el alumno.
- ✓ <u>El momento de cierre</u>: Donde el docente analiza críticamente ejemplos resueltos por los alumnos. De ser necesario introduce su propia elaboración de una solución al tema. Este momento incluye las conclusiones (elementos anteriores utilizados, comparaciones de diversas estrategias de solución, por ejemplo) y cierre del tema.

Los conceptos y elementos asociados a la unidad 5 son presentados y/o desarrollados durante el cursado insertos entre otros contenidos, esto es de manera no secuencial (según el programa de contenidos). Uso de mecanismos compartidos sobre redes y comunicaciones para la organización/distribución de los recursos de estudio así como para la realización de diversas actividades docentes complementarias a las propuestas de manera presencial. Si algún tema quedase sin dictar, se provee la bibliografía adecuada para abordar el mismo.

Actividad	Carga horaria por semestre		
Teoría y resolución de ejercicios simples	25		
Formación práctica			
Formación Experimental – Laboratorio	20		
Formación Experimental - Trabajo de campo	0		
Resolución de problemas de ingeniería	15		
Proyecto y diseño	30		
Total	90		

BIBLIOGRAFÍA

Bibliografía básica

Autor	Título	Editorial	Año	Ejemplares en biblioteca
G. BURDEA y P. COIFFET	Virtual Reality Technology. 2º ed.	Ed. Wiley- IEEE Press	2003	0
A. CRAIG, W. SHERMAN y J. WILL	Developing Virtual Reality Applications	Morgan Kaufmann	2009	0
M. GUTIERREZ, F. VEXO Y D. THALMANN	Stepping into Virtual Reality	Springer- Verlag	2008	0
DEITEL y DEITEL	Cómo programar en Java. 7º ed.	Pearson Education	2008	0
D. SHIFFMAN	Learning Processing: A Beginner's Guide to Programming Images, Animation, and Interaction	M. Kaufmann Series	2008	0
D. HEARN y M. P. BAKER	Gráficos por computadora con OpenGL, 3º ed.	Pearson- Prentice Hall	2006	0
	Computer Animation. Algorithms and Techniques 3° ed.	Morgan Kaufman	2012	0

▶ 2015 AÑO DEL BICENTENARIO DEL CONGRESO DE LOS PUEBLOS LIBRES

Bibliografía complementaria

Autor	Título	Editorial	Año	Ejemplares en biblioteca
G. BURDEA y P. COIFFET	Tecnologías de la Realidad Virtual	Paidós, Barcelona	1996	0
G. SELLERS, R. WRIGH Y N. HAEMEL	Unencial SuperBinie (6th Edition)	Addison- Wesley	2013	0
C. REAS Y B. FRY	Getting Started with Processing	O'Reilly	2010	0
J. FOLEY, A. VAN DAM, S. FEINER, J. HUGHES, R. PHILLIPS	Introducción a la Graficación por Computador	Addisson- Wesley Iberoamer.	1996	0
K. ERLEBEN, J. SPORRING y otros	Física para videojuegos	Cengage Learning.	2011	0

EVALUACIONES (S/ Ord. 108-10_CS)

Durante el período de clases, se prevé un sistema de evaluación continua consistente en un registro de los trabajos individuales y grupales realizados en clase.

Esto no implica la entrega de todos los trabajos al profesor por parte del alumno para su revisión. En el caso de la elaboración de programas propuestos, es el alumno quien debe lograr la habilidad de obtener software funcional y verificar la correctitud de su solución a partir del producto final obtenido. Mostrando finalmente sus resultados o conclusiones.

En base a las características del grupo y tiempos disponibles se agregará la elaboración de trabajos monográficos para su entrega y/o exposición.

Se prevé realizar al menos 1 evaluaciones de carácter parcial (esto es abordando contenidos conceptuales y prácticos que corresponden a un período indicado en clase oportunamente), con una única instancia de recuperación, también global.

Todas las evaluaciones deben dejar una constancia documental, es decir almacenadas en un archivo o escritas en papel. Esta evaluación (o una copia) es devuelta al alumno con las correcciones pertinentes.

El criterio de evaluación a seguir, es adelantado (informado) en clase y de ser posible se provee una "versión de prueba" con similar nivel de complejidad, aunque obviamente no con los mismos ejercicios, a efectos de fijar la estructura de la misma: cantidad de ejercicios, tipo de cada uno y ponderación, así como el nivel pretendido.

Para adquirir la regularidad y/o la aprobación de la asignatura se siguen los lineamientos generales fijados para la carrera, tanto académicos como administrativos.

Para la aprobación de la asignatura se prevé un examen final, donde el alumno presenta y defiende de manera individual un producto elaborado por él.

Éste producto conta de 2 componentes:

- Un desarrollo combinado de herramientas lógicas (software) con dispositivos IHM (hardware), orientado a resolver un problema de Realidad Mixta, aplicando diferentes conceptos fundamentales de la asignatura. El mismo debe funcionar libre de fallas (jamás terminar anormalmente).
- Un informe técnico que acompaña al anterior explicando su desarrollo paso a paso, como una memoria del trabajo realizado. Este informe incluye la justificación de las consideraciones adoptadas en el diseño.

La defensa consiste en una exposición coloquial orientada básicamente a explicar las estrategias y mecanismos utilizados en la confección del mismo y con la finalidad, tanto la de corroborar la autoría como el manejo de los conceptos fundamentales.

El proyecto de este producto se plantea de manera temprana durante el ciclo y el alumno puede desarrollarlo de manera paralela al cursado. En caso que el mismo esté completamente terminado y presentado al resto del curso satisfactoriamente, el alumno resulta directamente aprobado en la asignatura (promocionado).

Con respecto a otros detalles relacionados con adquirir la regularidad y/o la aprobación de la asignatura se siguen los lineamientos generales fijados para la carrera, tanto académicos como administrativos.

Programa de examen

No Aplicable