

Facu	•	Universidad Nacional de IA DE ASIGNATURA	Cuyo		
Asignatura:	Microcontrola	adores y Electrónica de P	otencia (309)		
Profesor Titular:	Eduardo E. IRIARTE				
Jefe de Trabajos Prácticos	Martín CRUZ				
Carrera:	Ingeniería Mecatrónica				
Año: 2022	Semestre: 7°	Horas Semestre: 60	Horas Semana: 4		

OBJETIVOS

Objetivo General:

• Analizar, diseñar y seleccionar esquemas y dispositivos para el comando electrónico de mecanismos, involucrando la adquisición, transmisión, procesamiento digital y regulación de potencia.

• Establecer los requerimientos físicos del control (topología, señales de entrada/salida, velocidad de adquisición y procesamiento, memoria, interfaces de comunicación, tensiones, corrientes, potencias, etc) a partir de las especificaciones del sistema a controlar.

Objetivos específicos de conocimientos

Al completar el cursado, los estudiantes tendrán conocimientos de: Esquemas y dispositivos de potencia para el comando electrónico de mecanismos. Dispositivos y herramientas para el desarrollo de controladores embebidos.

Objetivos específicos de aptitudes

Al completar el cursado y el trabajo integrador, los estudiantes serán capaces de: Concebir sistemas electrónicos para diferentes tipos de accionamiento de mecanismos, incluyendo adquisición de señales de sensores, procesamiento digital y comunicaciones. Desarrollar los sistemas antes mencionados, utilizando herramientas de software estándar, circuitos y módulos industriales o prediseñados de arquitectura abierta. Evaluar el comportamiento de los sistemas antes mencionados.

CONTENIDOS MÍNIMOS

Dispositivos electrónicos de regulación de potencia, aislación y protección. Características, Ámbitos de aplicación. Circuitos básicos.

Dispositivos integrados y módulos híbridos específicos de potencia: Puentes, convertidores. Esquemas de regulación de potencia en motores de CA trifásicos, motores de CC y motores de paso.

Reguladores lineales y conmutados. PWM. Lazos de regulación de tensión y corriente. Aplicaciones.

Microcontroladores y otros sistemas embebidos. Alternativas comerciales. Ámbitos de aplicación. Subsistemas. Configuración. Dispositivos integrados asociados para adquisición y transmisión. Programación. Entornos de desarrollo en lenguajes de alto nivel.

Comunicación del microcontrolador: UART, I2C, SPI, CAN, USB, Ethernet.

Aplicaciones: Automatismos de eventos discretos, adquisición de señales analógicas, transmisión de datos, regulación conmutada.

CONTENIDOS

UNIDAD 1: INTRODUCCIÓN: POSICIONAMIENTO CON EJES ELECTROMECÁNICOS SERVOCONTROLADOS. SENSORES Y ACTUADORES

1.A Eje mecánico servocontrolado.

Componentes mecánicos, electromecánicos y electrónicos. Modos de funcionamiento habituales, lazos de control: Posición-Velocidad-Torque. Referenciado (*homing*). Consignas de posicionamiento y tipos de trayectorias para sistemas de un eje. Lazos de control, parámetros y máquinas de estados de un servocontrolador.

1.B Sistemas multi-eje. Generación de trayectorias.

Generación de trayectorias en sistemas multi-eje. Tipos de movimiento para aplicaciones Punto a Punto y con control contínuo de trayectoria.

1.C Accionamiento de motores. Topologías y técnicas de control electrónico

Clasificación general de motores e identificación de los principales tipos utilizados en aplicaciones mecatrónicas.

PaP unipolares y bipolares. Esquemas para accionamiento en paso completo, medio paso micropaso. Control de corriente. Integrados específicos. Conexionados.

DC con escobillas (BDC). Esquemas para control unidireccional y bidireccional, modos de puente completo. Integrados específicos.

DC sin escobillas (BLDC). Características y aplicaciones. Esquemas para control, puente trifásico. Técnicas de conmutación por sensores Hall y por fuerza contra-electromotriz. Uso de microcontroladores o Integrados específicos.

1.D Sensores de posición lineal y angular

Synchros y Resolvers. Codificador óptico absoluto. Codificador óptico Incremental. Otros. Cableado y acondicionamiento, ventajas, limitaciones.

UNIDAD 2: PRINCIPIOS DE ELECTRÓNICA DE POTENCIA

2. A Introducción

Problemas de la regulación de potencia en régimen de conmutación.

Panorama de los dispositivos de conmutación de potencia, análisis comparativo en coordenadas Tensión/Corriente/Potencia/Frecuencia de conmutación.

2.B Dispositivos

Tiristores, GTOs, IGCTs. Características constructivas, curvas de salida, similitudes y diferencias en el funcionamiento. Ámbito de aplicación.

Transistor bipolar de potencia. Estructura física, curvas de salida, SOA. Segunda ruptura.

MOSFET de potencia. Curvas de salida. SOA. Estructura física en tecnologías clásica, *trench* y superjuntura. Elementos intrínsecos y su influencia en el encendido, bloqueo y encendido inducido.

IGBT. Estructura física. Similitudes y diferencias con el MOSFET. Generaciones. Curvas de salida, SOA. Elementos intrínsecos y su influencia en el encendido, bloqueo y encendido inducido.

2.C Agrupamiento de dispositivos

Conexión en serie y paralelo de dispositivos. Circuitos. Precauciones y limitaciones.

2.D Encapsulados y montaje.

Encapsulados stud, base plana, disco (press pack), módulos. Descripción de estructura y modo de montaje. Técnicas de conexión eléctrica-mecánica, factores para análisis

comparativo.

2.E Análisis térmico

Modelos y ecuaciones para representar la generación, transmisión y disipación de calor en semiconductores de potencia. Resistencia Térmica. Impedancia térmica. Interpretación de hojas de datos. Disipadores en aire. Disipadores de agua/aceite. Cálculos térmicos sobre ejemplos.

2.F Nuevos materiales semiconductores para dispositivos de potencia

Panorama de últimas tecnologías en semiconductores.

UNIDAD 3: MICROCONTROLADORES Y OTROS SISTEMAS EMBEBIDOS.

3.A Microcontroladores, DSPs, FPGAs

Sinopsis comparativa de dispositivos de procesamiento y control. Sistemas programables vs lógica cableada (FPGAs vs DSPs/µCs) en el ámbito del comando electrónico de mecanismos. Lectura de las especificaciones del fabricante (*datasheets*). Manejo de subsistemas a través de la lectura/escritura de los registros especiales asociados.

3.B Programación

Lenguaje ensamblador y lenguaje de alto nivel. Características de compiladores orientados a microcontrolador. Tipos de datos en C. Manipulación de bits.

3.C Configuración y uso de subsistemas.

Interrupciones. Lógica de interrupciones. Registros asociados. Latencia de interrupciones.

Interfaces de comunicación serie asíncronas y síncronas. UART, SPI. I2C, etc. Características eléctricas, topologías y modos de operación.

Subsistemas para control de movimiento: Interfaz A/D. Interfaces de lectura de codificadores ópticos incrementales en cuadratura (QEI). Interfaces de comando PWM para topologías de un transistor, puentes H y trifásicos.

3.D Control en tiempo real.

Uso de temporizadores. Latencias. Conceptos de sistemas de tiempo real (RTOS): Planificación de Tareas, prioridad, sincronización y comunicación. Uso de un RTOS en microcontrolador.

UNIDAD 4: APLICACIONES DE POSICIONAMIENTO

- **4.A** Controlador de eje con motor PaP, comandado por puerto serie, utilizando interrupción, con homing, posicionamiento y cambio de velocidad.
- **4.B** Controlador de eje con motor DC con escobillas, comandado por puerto serie, utilizando interrupción, con homing, posicionamiento y cambio de velocidades, banda proporcional etc.
- **4.C** Coordinador de dos o más ejes con microcontroladores intermediarios. Desarrollo del programa del coordinador y de los intermediarios.
- 4.D Controlador básico de eje con motor BLDC.

UNIDAD 5: COMUNICACIÓN EN SISTEMAS MULTIEJE.

5.A Conceptos básicos del Nivel de Enlace de Datos

Sincronización de movimientos en sistemas multi-eje. Requisitos de la comunicación.

Análisis comparativo de sistemas Maestro-esclavo, CSMA-CD y CSMA-CA. Ethernet conmutada.

5.B CAN-CANopen

El bus CAN (ISO 11898). Ubicación en el modelo OSI. Funciones. CAN2.0A/2.0B. Trama, características funcionales, características eléctricas. Hardware específico de microcontroladores con CAN.

CANopen. Características y aplicaciones. Ubicación en el modelo OSI. Especificaciones DS-301 y DS-402. Tramas SDO y PDO. Comando de un servocontrolador por CANopen.

5.C Otros protocolos de tiempo real y bajo jitter.

SERCOS. Versiones, características y aplicaciones. Estándar IEC 61491. Especificaciones de niveles OSI 1, 2 y 7. Topologias. Trama SERCOS. Telegramas. Perfiles. Dispositivos para su implementación. EtherCAT. Características y aplicaciones. Perfiles de dispositivo.

METODOLOGÍA DE ENSEÑANZA

La modalidad de clase es aula-taller, con permanente alternancia de teoría y práctica. Las fases posibles son:

- Introducción teórica o presentación de procedimientos.
- Ejemplificación con uso de simulaciones y gráficas.
- Demostración práctica sobre circuitos y sistemas reales.
- Ejercicios prácticos, planteo de problemas a resolver por los alumnos, con entrega y revisión periódica.
- Diálogo sobre resultados de los trabajos realizados.
- Cuestionario a través de formularios web, con el propósito de relevar el grado de entendimiento de los temas y la participación.
- Se hace uso de compiladores C, simuladores y programadores de microcontrolador, llevando algunos ejercicios a circuito experimental. La mayoría de las experiencias son realizables con materiales accesibles por parte de los alumnos (microcontroladores, placas drivers de motores, motores etc).

Actividad	Carga horaria por semestre
Teoría y resolución de ejercicios simples	30
Formación práctica	
Formación Experimental – Laboratorio	15
Formación Experimental - Trabajo de campo	0
Resolución de problemas de ingeniería.	15
Proyecto y diseño: Desarrollo de un sistema mecatrónico	(30)
Total	60 (90)
Porcentaje de Horas Presenciales	30 % del Total
Porcentaje de Horas a Distancia	70 % del Total

BIBLIOGRAFÍA

Bibliografía básica

Dibirograna basica				
Autor	Título	Editorial	Año	Ejemplares en biblioteca
Espinosa FS	Los microcontroladores AVR de Atmel	UT de la Mixteca	2012	-
Ariel Lutenberg, Pablo Gomez, Eric Pernia	A Beginner's Guide to Designing Embedded System Applications on Arm Cortex-M Microcontrollers	ARM Education Media	2022	<u>web</u>
Bolton, W	Mecatrónica : sistemas de control electrónico en la ingeniería mecánica y eléctrica	Alfaomega	2010	1
Martínez García, S et al	Electrónica de Potencia: componentes, topologías y equipos	Paraninfo	2006	
Hart, D	Electrónica de Potencia	Pearson Ed	2001	1
Rashid, M	Electrónica de potencia : circuitos, dispositivos y aplicaciones	Pearson Ed	1995	1
Balcells, J. Romeral J.L	Autómatas Programables	Marcombo	1997	

Bibliografía complementaria

Dibliografia comple	incitaria				
Autor	Título	Editorial	Año	Ejemplares en biblioteca	
Barr, M	Embedded C Coding Standard	Barr-group	2018	- (pdf)	
Embree, P	C algorithms for real-time DSP	_			
Stallings, William	Comunicaciones y redes de computadores	Prentice- Hall	2004	1	
Emaus B, Klueser J.	Introd. to the CANopen Documentation Family V 2.2.	Vector Inc. Germany	2008	web	
NEMA	NEMA Standards ICS 16	NEMA	2001	web	
Paret, D.	ret, D. Multiplexed Networks for Embedded Systems.		2007	-	
Wintrich, A et al (Semikron GmbH)	Application Manual Power Semiconductors	ISLE Verlag	2011	web	

Hojas de datos, manuales de referencia, guías de uso

Autor	Título	Editorial	Año	Ejemplares en biblioteca
Savanna.gnu.org	AVR libc user manual 2.0	-	2016	-
Atmel	ATmega48A/PA/88A/PA/168A/PA/328/P Datasheet	Atmel	2014	web
Atmel	ATmega640/1280/1281/2560/2561	Atmel	2012	web
ARM	ARM Cortex-M series	ARM	2015	web
Atmel	Atmel Studio – User guide	Atmel	2016	web
ST Microelectronics	STM32F4xx Reference Manual RM0090	ST 2016 Microelec		web
ST Microelectronics	Microelectronics STM32F3,F4,L4 Programming Manual PM0214		2016	web
CiA (CAN in Automation) CANopen Device profile for drives and motion control, CiA DS402.		CiA	2006	web

Páginas recomendadas

Microcontroladores

Microchip/Atmel:

www.microchip.com

ST Microelectronics ARM:

www.st.com www.arm.com

Dispositivos, controladores y módulos de potencia

Infineon:

www.infineon.com

Semikron: Allegro: www.semikron.com www.allegromicro.com

Otros

Revista Bodo's Power: www.bodospower.com

Interactive Power Electronics Seminar (iPES): www.ipes.ethz.ch

EVALUACIONES

Para la obtención de la regularidad:

Realización del 100% de los cuestionarios de clase y resolución del 100% de los ejercicios obligatorios planteados.

Aprobación de Examen Global integrador: Resolución de uno o más problemas de programación, cálculo y cuestionario conceptual.

Para aprobación de la asignatura:

Haber obtenido la regularidad.

Realizar un Proyecto Integrador: Diseño e implementación de un sistema mecatrónico de mediana complejidad con microcontrolador. Informe, exposición y defensa.

La cátedra dispone de proyectos sugeridos, pero el alumno puede proponer el tema mediante un anteproyecto.

La exposición y defensa del Proyecto Integrador tiene carácter de examen final, y requiere etapas de seguimiento con al menos dos puntos de control, una aprobación previa del Informe y comprobación del funcionamiento del sistema desarrollado, con al menos una semana de anticipación a la mesa de examen.

Criterios de Evaluación:

En concordancia con una metodología basada en resolución de problemas integrados de programación de microcontroladores, aplicado a problemas de control y sensado de ejes mecánicos servocontrolados, se procura que el estudiante alcance en grado adecuado los siguientes resultados:

Saber conocer:

- a. Concepto de eje mecánico servocontrolado y de sistemas multi-eje. Características y requerimientos básicos de control.
- b. Concepto de control en cascada y modos operativos de un servo industrial.
- c. Principios de funcionamiento de sensores y actuadores para posicionamiento.
- d. Determinar y comparar características y requerimientos de los circuitos y señales de excitación de sensores y actuadores para posicionamiento.
- e. Sistemas embebidos y entornos de desarrollo.
- f. Subsistemas de microcontroladores. Arquitecturas de 8 y 32 bits.
- g. Topologías de control de motores PaP, BDC y BLDC, dispositivos de potencia y circuitos de excitación.
- h. Protocolos de comunicación aplicados a control de sistemas multi-eje.

Saber hacer:

- a. Seleccionar, montar y programar sistemas embebidos.
- b. Realizar ajustes de hardware y software.
- c. Dominar entornos de programación.
- d. Programar en lenguajes de alto nivel.
- e. Aplicar métodos de configuración de subsistemas, técnicas de manipulación de bits y técnicas de planteo de aplicaciones.
- f. Montar circuitos de ensayo, manipular dispositivos e instrumentos, realizar mediciones.

accesorios

- g. Realizar el enfoque sistémico, identificar los bloques de sistemas simples y las señales que circulan entre ellos.
- h. Extraer requerimientos de controladores (básico).
- i. Interpretar hojas de datos y manuales de usuario de dispositivos, identificar bloques funcionales en sistemas de mediana complejidad.

Saber ser:

- a. Sentido del reto.
- b. Confianza y autoestima para preguntar, cuestionar, proponer o conjeturar, con la aceptación del error como fenómeno cotidiano en el aprendizaje.
- c. Respeto por quien se equivoca o tiene más dificultades.
- d. Desempeño en equipos de trabajo.
- e. Responsabilidad en la realización y puntualidad en la entrega de los trabajos.
- f. Responsabilidad en la realización de las prácticas.
- g. Respeto a directivas de seguridad y de buen uso de dispositivos y equipos.
- h. Valoración de las diferentes soluciones que aporta cada estudiante.
- i. Rigor en el análisis de especificaciones.
- j. Sentido crítico y rigor en la evaluación de lo realizado.

Para la aprobación de la materia se ha establecido la siguiente rúbrica. El nivel Básico se considera suficiente para la obtención de la Regularidad, en tanto para la aprobación de la asignatura se requiere alcanzar el nivel de Competente.

Calificación. A partir de los trabajos resueltos y el desarrollo del Trabajo Integrador se obtiene una estimación de 5 aspectos:

Nivel de logro Principiante		Básico	Competente	Avanzado	
Criterio	(%)		(obtención de regularidad)	(aprobado)	
Criterio 1: Obtiene las especificaciones y requerimientos Analizando la aplicación	20	No reconoce los bloques ni las señales que circulan entre ellos.	Reconoce los bloques principales pero no puede especificar las señales que circulan entre ellos.	Reconoce los bloques e interpreta correctamente las señales principales, características y rangos.	Reconoce los bloques, especifica correctamente las señales principales, características y rangos, tiene en cuenta aspectos prácticos no triviales.
Criterio 2: Configura Hardware	20	Tiene dificultades para configurar subsistemas simples de microcontrolador	Puede configurar subsistemas simples solamente utilizando drivers de terceros.	Configura subsistemas y microcontroladoes simples (8 bits) con drivers o manipulando registros. Es capaz de hacer sus propios drivers	Configura subsistemas y microcontroladores de 8 32 bits con drivers o manipulando registros. E capaz de hacer sus propios drivers
Criterio 3: Implementa Controladores	20	No resuelve problemas simples de automatismos y control.	Resuelve problemas simples de automatismo y control en uC de 8 bits con herramientas estándar	Resuelve problemas de automatismo y control de mediana complejidad en uC de 8 bits con herramientas estándar	Resuelve problemas de automatismo y control de mediana complejidad en uC de 8 y 32 bits con herramientas estándar
Criterio 4: Determina soluciones viables de control y comunicaciones	20	aplicación con especificaciones de microcontrolador.	desarrollo viables para		Puede determinar distinto sistemas embebidos y herramientas de desarroli viables para aplicaciones de mediana complejidad.
Criterio 5: Concibe copologías, selecciona dispositivos de potencia y circuitos	20	No puede realizar cálculos básicos de potencia. No reconoce topologías básicas de control de	Resuelve problemas básicos de cálculo térmico, con criterios de básicos de selección de dispositivos. Reconoce	partir del cálculo, seleccionar topologías y circuitos accesorios (drivers	Puede concebir de forma integral diferentes topologías, dispositivos y circuitos accesorios, con criterio técnico.

Nivel de logro	Peso	Principiante	Básico	Competente	Avanzado
Criterio	. relativo	2 puntos	6 puntos	8 puntos	10 puntos
1: Interpretación	20	0,4	1,2	1,6	2
2: Procedimiento	20	0,4	1,2	1,6	2
3: Concepción - uC	20	0,4	1,2	1,6	2
4: Delimitación	20	0,4	1,2	1,6	. 2
5: Concepción y delimitación - EP	20	0,4	1,2	1,6	2
		2	6	8	10

Eduardo E. Iriarte, 15 de marzo de 2022