MACONIA DE LA COMO DE

Facultad de Ingeniería - Universidad Nacional de Cuyo				
PROGRAMA DE ASIGNATURA				
Asignatura: MAQUINAS E INSTALACIONES TERMICAS				
Carrera:	Ingeniería Industrial			
Año:	2012			

OBJETIVOS GENERALES DE LA ASIGNATURA

- CONOCER LAS CARACTERIATICAS TECNICAS, DE FUNCIONAMIENTO, MANTENIMIENTO Y RENDIMIENTO DE GENERADORES DE VAPOR.
- CONOCER EL USO EFICIENTE DEL VAPOR EN LA GENERACION DE ENERGIA Y PROCESOS INDUSTRIALES.
- CONOCER LAS CARACTERISTICAS TECNICAS, DE FUNCIONAMIENTO, MANTENIMIENTO Y RENDIMIENTO DE LAS DIFERENTES MAQUINAS TERMICAS.
- CONOCER EL CAMPO DE APLICACION Y USO EFICIENTE DE CADA UNA DE LAS MAQUINAS TERMICAS. CONOCER SUS CURVAS CARACTERÍSTICAS DE OPERACIÓN.
- CONOCER EL CAMPO DE APLICACIÓN DE LAS MAQUINAS FRIGORÍFICAS Y SUS INSTALACIONES COMPLEMENTARIAS.
- DISEÑAR Y PROYECTAR CAMARAS FRIGORIFICAS INDUSTRIALES.
- SELECCIONAR EQUIPOS COMPONENTES DE LAS INSTALACIONES FRIGORIFICAS, TALES COMO: EVAPORADORES, CONDENSADORES Y COMPRESORES. CONOCER SUS CURVAS CARACTERÍSTICAS DE OPERACIÓN.

CONTENIDOS DE LA ASIGNATURA

UNIDAD 1: CURVAS CARACTERISTICAS EN MOTORES DE COMBUSTION INTERNA

- **1.A.** Motores de combustión interna. Ciclo indicado. Presión media indicada. Diferencia entre el Ciclo OTTO real y teórico. Diferencia entre el Ciclo DIESEL real y teórico. Análisis del diagrama indicado. Diagrama de presiones vs. Desplazamiento angular para motores de 4 y 2 tiempos.
- **1.B.** Potencia indicada. Potencia efectiva. Presión media efectiva. Rendimientos. Curvas características. Rendimiento volumétrico. Factores que influyen sobre la pérdida de potencia.
- 1.C. Combustión en motores de encendido por chispa. Combustión normal. Velocidad de propagación de la llama. Factores que la afectan. Variaciones de la presión durante la combustión. Combustión anormal. Encendido superficial. Detonación. Variables que influyen en la detonación. Adelanto al encendido. Cámaras de combustión empleadas.

UNIDAD 2: COMBUSTION EN MOTORES DE COMBUSTION INTERNA

2.A. La combustión en motores de encendido por compresión. Retraso a la ignicción. Su incidencia en el diagrama de presiones. Variables que influyen en el retraso a la ignicción. Cámaras de combustión empleadas.

- **2.B.** Combustibles empleados en los motores de combustión interna. Número octano. Aditivos antidetonantes. Número cetano.
- **2.C.** Alimentación en motores de encendido por chispa. Principio de funcionamiento del carburador. Tipos: ZENITH, SOLEX y WEBER. Carburadores de inyección. Inyección en motores de encendido por compresión. Inyección mecánica. Bomba de émbolo rotativo. Inyectores.

UNIDAD 3: PODER CALORIFICO DE COMBUSTIBLES INDUSTRIALES

- **3.A.** Poder calorífico de combustibles. Poder calorífico superior. Poder calorífico inferior. Relación entre los poderes caloríficos.
- **3.B.** Determinación del poder calorífico: Método analítico. Fórmula de DULONG. Poder calorífico inferior base seca y base húmeda. Fórmula de HUTTE. Relación entre poder calorífico superior y la densidad del combustible.
- 3. C. Determinación del poder calorífico por el Método Práctico. Calorímetro de MAHLER. Elementos componentes del calorímetro. Descripción del ensayo. Procedimiento de cálculo. Determinación de la constante del aparato. Determinación del poder calorífico superior e inferior.

UNIDAD 4: COMBUSTION EN PROCESOS INDUSTRIALES

- **4.A.** Combustión industrial. Principios de la combustión. Tipos: combustión perfecta; completa; incompleta e imperfecta. Combustión de elementos componentes de los combustibles con oxígeno. Combustión de los elementos componentes de los combustibles con aire.
- **4.B.** Combustión perfecta de diferentes combustibles industriales con aire.
- 4.C. Combustión completa de diferentes combustibles industriales con aire. Cálculo de la cantidad de oxígeno libre; cálculo de la cantidad de anhídrido carbónico; cálculo del volumen de gases secos. Combustión incompleta del combustible: cálculo de la cantidad de oxígeno libre; cálculo de la cantidad de monóxido de carbono; cálculo del volumen de gases secos. Exceso de aire. Factor de aire.

UNIDAD 5: ANALISIS DE GASES DE COMBUSTION Y DIAGRAMAS DE COMBUSTION

- **5.A.** Análisis de los gases de combustión: objetivo del análisis. Equipos utilizados: a) analizadores químicos: aparato ORSAT: principio de funcionamiento; descripción del aparato y modo de empleo y b) analizadores electroquímicos.
- **5.B.** Puntos de medición. Interpretación de los parámetros medidos. Valores admisibles según tipo de combustibles.
- **5.C.** Diagramas de combustión: triángulo de OSTWALD. Construcción del triángulo para distintos combustibles. Modo de empleo.

UNIDAD 6: CALDERAS HUMOTUBULARES Y ACUOTUBULARES. CICLO RANKINE

6.A. Calderas humotubulares: tipos, diseños, características, esquemas, campos de aplicación, operación y mantenimiento. Números de pasos.
Calderas acuotubulares de circulación natural: tipos, diseños, características, esquemas, campos de aplicación, operación y mantenimiento. Números de pasos.

- 6.B. Calderas acuotubulares de circulación asistida y de paso forzado. Tipos: BENSON; LA MONT; VELOX; LOFFLER. Características, esquemas, campos de aplicación, operación y mantenimiento.
 - Cálculo del rendimiento térmico en calderas. Método Directo: ecuaciones empleadas. Diagrama de SANKY.
- **6.C.** Ciclo RANKINE: ciclo simple; ciclo con sobrecalentamiento; ciclo con economizador; ciclo con recalentamiento; ciclo con extracciones. Metodología para el cálculo y trazado del ciclo real. Diagramas: "p-v"; "T-S" y "p-i".

UNIDAD 7: TURBINAS A GAS CICLO BRAYTON

- **7.A.** Turbina a gas de un solo eje. Ventajas y limitaciones. Esquema de la instalación. Diagramas reales: "p-v" y "T-S". Cálculo del rendimiento: ciclo teórico y ciclo real. Turbina a gas de un solo eje con regeneración. Esquema de la instalación. Diagramas reales: "p-v" y "T-S". Cálculo del rendimiento.
- **7.B.** Turbina a gas de doble eje. Ventajas y limitaciones. Esquema de instalación. Aplicaciones. Gráficos de curvas de rendimiento. Etapas para la puesta en marcha y detención de una turbina.
- **7.C.** Combustibles empleados en turbinas a gas. Cámaras de combustión: tipos; diseños y funcionamiento. Limpieza de una turbina a gas.

UNIDAD 8: TRATAMIENTO DE AGUA PARA CALDERAS

- **8.A.** Tratamiento de agua para calderas. Impurezas del agua: sólidos en suspensión; sólidos en disolución y gases disueltos. Inconvenientes producidos. Consecuencias originadas por las impurezas.
- **8.B.** Ablandamiento de agua para calderas: a) métodos químicos: cal soda; sosa cáustica; soda; fosfatos sódicos y b) método físico: reacciones iónicas. Desgasificación: a) térmica y b) química. Esquema de instalación. Funcionamiento.
- **8.C.** Desmineralización de agua para calderas: a) tren de desmineralización: reacciones aniónicas y reacciones catiónicas y b) método de ósmosis inversa.

UNIDAD 9: INSTALACIONES FRIGORIFICAS INDUSTRIALES

- **9.A.** Instalaciones frigoríficas. Máquinas frigoríficas: de compresión y de absorción. Tipos, características técnicas y funcionamiento. Efecto frigorífico. Coeficiente de efecto frigorífico. Rendimiento. Esquemas de las instalaciones. Diagramas: "p-v"; "T-S" y "p-i".
- **9.B.** Fluidos refrigerantes. Tipos y propiedades de los fluidos refrigerantes. Criterios de selección. Uso de gráficos y ábacos de fabricantes.
- **9.C.** Proyecto de cámaras frigoríficas: a) cámara de conservación y b) cámara de congelamiento. Diseño y balance térmico de las cámaras.

METODOLOGÍA DE ENSEÑANAZA

METODOLOGIA A UTILIZAR

La metodología de enseñanza a utilizar será la de evaluación continua del alumno, combinando adecuadamente en cada clase los conceptos teóricos con la práctica.

Además las clases se desarrollarán de manera que el alumno sea parte activa de la misma, participando con opiniones, experiencias, comentarios y exposición de temas previamente acordados con la Cátedra.

RECURSOS DIDACTICOS A UTILIZAR

Los recursos didácticos a utilizar en el desarrollo de las clases son: a) data display, b) retroproyector, c) láminas didácticas, d) elementos y partes componentes de máquinas e instalaciones térmicas.

Actividad	Carga horaria por semestre
Teoría y resolución de ejercicios simples	40
Formación práctica	
Formación Experimental - Laboratorio	10
Formación Experimental - Trabajo de campo	0
Resolución de problemas de ingeniería	10
Proyecto y diseño	10
Total	70

BIBLIOGRAFÍA

BIBLIOGRAFIA POR UNIDAD TEMATICA

UNIDAD TEMATICA	BIBLIOGRAFIA
	BIBLIOGRAFIA OBLIGATORIA
	COMBUSTION INDUSTRIAL Ing. Jorge Félix FERNANDEZ Editorial: Facultad de Ingeniería Universidad Nacional de Cuyo
	ENERGIA MEDIANTE VAPOR, AIRE o GAS W.H. SEVERNS – H.E. DEGLER – J.C. MILES Editorial: Reverté S.A. – Argentina
COMBUSTION INDUSTRIAL	BIBLIOGRAFIA DE CONSULTA
	PRINCIPLES OF COMBUSTION Arthur D. PRATT Editorial: Babcock & Wilcox Ltd. – England
	CALCULO DE LA COMBUSTION Ing. Rodolfo OREL Editorial: Alsina – Argentina
	BIBLIOGRAFIA OBLIGATORIA
	PODER CALORIFICO Ing. Jorge Félix FERNANDEZ Editorial: Facultad de Ingeniería Universidad Nacional de Cuyo
PODER	ENSAYOS INDUSTRIALES Antonio GONZALEZ – Alfredo PALAZON

CALORIFICO DE COMBUSTIBLES	Editorial: Ediciones Litenia – Argentina
INDUSTRIALES	BIBLIOGRAFIA DE CONSULTA
	COMBUSTION Y GENERACION DE VAPOR Raúl TORREGUITAR – Alfredo WEISS Editorial: Establecimientos Gráficos Platt - Argentina
	STEAM ITS GENERATION AND USE Babcok & Wilcox Editorial: Library of Congress – EEUU
	BIBLIOGRAFIA OBLIGATORIA
ANALISIS DE GASES DE COMBUSTION	ANALISIS DE GASES DE COMBUSTION Ing. Jorge Félix FERNANDEZ Editorial: Facultad de Ingeniería Universidad Nacional de Cuyo
COMBUSTION	BIBLIOGRAFIA DE CONSULTA
	GENERACION DEL VAPOR Ing. Marcelo MESNY Editorial: Marynar - Argentina
	CATALOGOS DE FABRICANTES DE EQUIPOS
	BIBLIOGRAFIA OBLIGATORIA
	TRIANGULO DE OSTWALD Ing. Jorge Félix FERNANDEZ Editorial: Facultad de Ingeniería Universidad Nacional de Cuyo
TRIANGULO DE COMBUSTION DE	GENERACION DEL VAPOR Ing. Marcelo MESNY Editorial: Marymar – Argentina
OSWALD	BIBLIOGRAFIA DE CONSULTA
	COMBUSTION DIAGRAM Shell Company Editorial: Shell Company – EEUU
	PRINCIPLES OF COMBUSTION Arthur D. PRATT Editorial: Babcock & Wilcox Ltd. – England
	BIBLIOGRAFIA OBLIGATORIA
	GENERADORES DE VAPOR Ing. Jorge Félix FERNANDEZ Editorial: Facultad de Ingeniería Universidad Nacional de Cuyo
CALDERAS HUMOTUBULARES Y	COMBUSTION Y GENERACION DE VAPOR Raúl TORREGUITAR – Alfredo WEISS Editorial: Establecimientos Gráficos Platt-Argent.
ACUOTUBULARES	BIBLIOGRAFIA DE CONSULTA GENERACION DEL VAPOR
	Ing. Marcelo MESNY Editorial: Marymar – Argentina

STEAM ITS GENERATION AND USE Babcoks & Wilcox Editorial: Library of Congress – EEUU BIBLIOGRAFIA OBLIGATORIA TRATAMIENTO DE AGUA PARA CALDERA I Ing. Jorge Feik FERNANDEZ Editorial: Facultad Regional Mendoza Universidad Tecnológica Nacional TRATAMIENTO DE AGUA PARA CALDERA II Ing. Jorge Feik FERNANDEZ Editorial: Facultad Regional Mendoza Universidad Tecnológica Nacional BIBLIOGRAFIA DE CONSULTA CONDICIONES DEL AGUA PARA CALDERAS Mellor & Wodwin Editorial: Mellor & Woodwin – Argentina CORROSION EN CALDERAS Babcock & Wilcox Editorial: Almirantazgo Británico – England BIBLIOGRAFIA OBLIGATORIA GENERACION DEL VAPOR Ing. Marcelo MESNY Editorial: Marymar – Argentina BIBLIOGRAFIA DE CONSULTA TERMODINAMICA Y MOTORES TERMICOS D. H. MARTER Editorial: UTHEA – México PLANTAS DE VAPOR Charles Donald SWIFT Editorial: Mc. Graw – Hill – México BIBLIOGRAFIA OBLIGATORIA CICLO BRAYTON – TURBINAS A GAS Ing. Vicente CREMADES Editorial: Universidad Nacional de Cuyo Facultad de Ingeniería BIBLIOGRAFIA DE CONSULTA TURBOMAQUINAS DE VAPOR Y GAS M. LUCINI Editorial Labor S.A. – Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPI – España EBILIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPI – España		
TRATAMIENTO DE AGUA PARA CALDERA I Ing. Jorge Félix FERNANDEZ Editorial: Facultad Regional Mendoza Universidad Tecnológica Nacional TRATAMIENTO DE AGUA PARA CALDERA II Ing. Jorge Félix FERNANDEZ Editorial: Facultad Regional Mendoza Universidad Tecnológica Nacional BIBLIOGRAFIA DE CONSULTA CONDICIONES DEL AGUA PARA CALDERAS Mellor & Wodwin Editorial: Mellor & Woodwin – Argentina CORROSION EN CALDERAS Babcock & Wilcox Editorial: Almirantazgo Británico – England BIBLIOGRAFIA OBLIGATORIA GENERACION DEL VAPOR Ing. Marcelo MESNY Editorial: Marymar – Argentina BIBLIOGRAFIA DE CONSULTA TERMODINAMICA Y MOTORES TERMICOS D. H. MARTER Editorial: UTHEA – México PLANTAS DE VAPOR Charles Donald SWIFT Editorial: Winc. Graw – Hill – México BIBLIOGRAFIA OBLIGATORIA CICLO BRAYTON CICLO BRAYTON CICLO BRAYTON BIBLIOGRAFIA OBLIGATORIA CICLO BRAYTON – TURBINAS A GAS Ing. Vicente CREMADES Editorial: Universidad Nacional de Cuyo Facultad de Ingeniería BIBLIOGRAFIA DE CONSULTA TURBOMAQUINAS DE VAPOR Y GAS M. LUCINI Editorial Labor S.A. – Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España		Babcok & Wilcox
Ing. Jorge Félix FERNANDEZ Editorial: Facultad Regional Mendoza Universidad Tecnológica Nacional TRATAMIENTO DE AGUA PARA CALDERAS TRATAMIENTO DE AGUA PARA CALDERA II Ing. Jorge Félix FERNANDEZ Editorial: Facultad Regional Mendoza Universidad Tecnológica Nacional BIBLIOGRAFIA DE CONSULTA CONDICIONES DEL AGUA PARA CALDERAS Mellor & Woodwin Editorial: Mellor & Woodwin – Argentina CORROSION EN CALDERAS Babcock & Wilcox Editorial: Almirantazgo Británico – England BIBLIOGRAFIA OBLIGATORIA GENERACION DEL VAPOR Ing. Marcelo MESNY Editorial: Marymar – Argentina BIBLIOGRAFIA DE CONSULTA TERMODINAMICA Y MOTORES TERMICOS D. H. MARTER Editorial: UTHEA – México PLANTAS DE VAPOR Charles Donald SWIFT Editorial: Mc. Graw – Hill – México BIBLIOGRAFIA OBLIGATORIA CICLO BRAYTON CICLO BRAYTON CICLO BRAYTON BIBLIOGRAFIA DE CONSULTA TURBOMAQUINAS DE VAPOR Y GAS M. LUCINI Editorial Labor S.A. – Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España		BIBLIOGRAFIA OBLIGATORIA
Ing. Jorge Félix FERNANDEZ Editorial: Facultad Regional Mendoza Universidad Tecnológica Nacional BIBLIOGRAFIA DE CONSULTA CONDICIONES DEL AGUA PARA CALDERAS Mellor & Woodwin — Argentina CORROSION EN CALDERAS Babcock & Wilcox Editorial: Mellor & Woodwin — Argentina CORROSION EN CALDERAS Babcock & Wilcox Editorial: Almirantazgo Británico — England BIBLIOGRAFIA OBLIGATORIA GENERACION DEL VAPOR Ing. Marcelo MESNY Editorial: Marymar — Argentina BIBLIOGRAFIA DE CONSULTA TERMODINAMICA Y MOTORES TERMICOS D. H. MARTER Editorial: UTHEA — México PLANTAS DE VAPOR Charles Donald SWIFT Editorial: Mc. Graw — Hill — México BIBLIOGRAFIA OBLIGATORIA CICLO BRAYTON — TURBINAS A GAS Ing. Vicente CREMADES Editorial: Universidad Nacional de Cuyo Facultad de Ingeniería BIBLIOGRAFIA DE CONSULTA TURBOMAQUINAS DE VAPOR Y GAS M. LUCINI Editorial Labor S.A. — Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI — España BIBLIOGRAFIA OBLIGATORIA MOTORES DEDITEMICOS Dante GIACOSA Editorial: HOEPLI — España	TRATAMIENTO	Ing. Jorge Félix FERNANDEZ Editorial: Facultad Regional Mendoza Universidad Tecnológica Nacional
CONDICIONES DEL AGUA PARA CALDERAS Mellor & Wodwin Editorial: Mellor & Woodwin – Argentina CORROSION EN CALDERAS Babcock & Wilcox Editorial: Almirantazgo Británico – England BIBLIOGRAFIA OBLIGATORIA GENERACION DEL VAPOR Ing. Marcelo MESNY Editorial: Marymar – Argentina BIBLIOGRAFIA DE CONSULTA TERMODINAMICA Y MOTORES TERMICOS D. H. MARTER Editorial: UTHEA – México PLANTAS DE VAPOR Charles Donald SWIFT Editorial: Mc. Graw – Hill – México BIBLIOGRAFIA OBLIGATORIA CICLO BRAYTON – TURBINAS A GAS Ing. Vicente CREMADES Editorial: Universidad Nacional de Cuyo Facultad de Ingeniería BIBLIOGRAFIA DE CONSULTA TURBOMAQUINAS DE VAPOR Y GAS M. LUCINI Editorial Labor S.A. – Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España		Ing. Jorge Félix FERNANDEZ Editorial: Facultad Regional Mendoza
Babcock & Wilcox Editorial: Almirantazgo Británico – England BIBLIOGRAFIA OBLIGATORIA GENERACION DEL VAPOR Ing. Marcelo MESNY Editorial: Marymar – Argentina BIBLIOGRAFIA DE CONSULTA TERMODINAMICA Y MOTORES TERMICOS D. H. MARTER Editorial: UTHEA – México PLANTAS DE VAPOR Charles Donald SWIFT Editorial: Mc. Graw – Hill – México BIBLIOGRAFIA OBLIGATORIA CICLO BRAYTON – TURBINAS A GAS Ing. Vicente CREMADES Editorial: Universidad Nacional de Cuyo Facultad de Ingeniería BIBLIOGRAFIA DE CONSULTA TURBOMAQUINAS DE VAPOR Y GAS M. LUCINI Editorial Labor S.A. – Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España		CONDICIONES DEL AGUA PARA CALDERAS Mellor & Wodwin
CICLO RANKINE GENERACION DEL VAPOR Ing. Marcelo MESNY Editorial: Marymar – Argentina BIBLIOGRAFIA DE CONSULTA TERMODINAMICA Y MOTORES TERMICOS D. H. MARTER Editorial: UTHEA – México PLANTAS DE VAPOR Charles Donald SWIFT Editorial: Mc. Graw – Hill – México BIBLIOGRAFIA OBLIGATORIA CICLO BRAYTON – TURBINAS A GAS Ing. Vicente CREMADES Editorial: Universidad Nacional de Cuyo Facultad de Ingeniería BIBLIOGRAFIA DE CONSULTA TURBOMAQUINAS DE VAPOR Y GAS M. LUCINI Editorial Labor S.A. – Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España		Babcock & Wilcox
Ing. Marcelo MESNY Editorial: Marymar – Argentina BIBLIOGRAFIA DE CONSULTA TERMODINAMICA Y MOTORES TERMICOS D. H. MARTER Editorial: UTHEA – México PLANTAS DE VAPOR Charles Donald SWIFT Editorial: Mc. Graw – Hill – México BIBLIOGRAFIA OBLIGATORIA CICLO BRAYTON – TURBINAS A GAS Ing. Vicente CREMADES Editorial: Universidad Nacional de Cuyo Facultad de Ingeniería BIBLIOGRAFIA DE CONSULTA TURBOMAQUINAS DE VAPOR Y GAS M. LUCINI Editorial Labor S.A. – Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España		BIBLIOGRAFIA OBLIGATORIA
TERMODINAMICA Y MOTORES TERMICOS D. H. MARTER Editorial: UTHEA – México PLANTAS DE VAPOR Charles Donald SWIFT Editorial: Mc. Graw – Hill – México BIBLIOGRAFIA OBLIGATORIA CICLO BRAYTON – TURBINAS A GAS Ing. Vicente CREMADES Editorial: Universidad Nacional de Cuyo Facultad de Ingeniería BIBLIOGRAFIA DE CONSULTA TURBOMAQUINAS DE VAPOR Y GAS M. LUCINI Editorial Labor S.A. – Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España	CICLO RANKINE	Ing. Marcelo MESNY
D. H. MARTER Editorial: UTHEA – México PLANTAS DE VAPOR Charles Donald SWIFT Editorial: Mc. Graw – Hill – México BIBLIOGRAFIA OBLIGATORIA CICLO BRAYTON – TURBINAS A GAS Ing. Vicente CREMADES Editorial: Universidad Nacional de Cuyo Facultad de Ingeniería BIBLIOGRAFIA DE CONSULTA TURBOMAQUINAS DE VAPOR Y GAS M. LUCINI Editorial Labor S.A. – Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España		BIBLIOGRAFIA DE CONSULTA
Charles Donald SWIFT Editorial: Mc. Graw – Hill – México BIBLIOGRAFIA OBLIGATORIA		D. H. MARTER
CICLO BRAYTON – TURBINAS A GAS Ing. Vicente CREMADES Editorial: Universidad Nacional de Cuyo Facultad de Ingeniería BIBLIOGRAFIA DE CONSULTA TURBOMAQUINAS DE VAPOR Y GAS M. LUCINI Editorial Labor S.A. – Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España		Charles Donald SWIFT
CICLO BRAYTON CICLO BRAYTON BIBLIOGRAFIA DE CONSULTA TURBOMAQUINAS DE VAPOR Y GAS M. LUCINI Editorial Labor S.A. – Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España		BIBLIOGRAFIA OBLIGATORIA
BIBLIOGRAFIA DE CONSULTA TURBOMAQUINAS DE VAPOR Y GAS M. LUCINI Editorial Labor S.A. – Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España		Ing. Vicente CREMADES Editorial: Universidad Nacional de Cuyo
M. LUCINI Editorial Labor S.A. – Argentina MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España	CICLO BRAYTON	BIBLIOGRAFIA DE CONSULTA
Dante GIACOSA Editorial: HOEPLI – España BIBLIOGRAFIA OBLIGATORIA MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España		M. LUCINI
MOTORES ENDOTERMICOS Dante GIACOSA Editorial: HOEPLI – España		Dante GIACOSA
Dante GIACOSA Editorial: HOEPLI – España		BIBLIOGRAFIA OBLIGATORIA
MOTORES DE		
I BIBLIOGRAFIA DE CONSULTA		
INTERNA MOTORES TERMICOS	MOTORES DE COMBUSTION	

	R. MARTINEZ DE VEDIA Editorial: Reverté S.A. – México
	ENERGIA MEDIANTE VAPOR, AIRE o GAS W.H. SEVERNS – H.E. DEGLER – J.C. MILES Editorial: Reverté S.A. – Argentina
	BIBLIOGRAFIA OBLIGATORIA
INSTALACIONES FRIGORIFICAS	INSTALACIONES FRIGORIFICAS Ing. Vicente CREMADES Editorial: Universidad Nacional de Cuyo Facultad de Ingeniería
	BIBLIOGRAFIA DE CONSULTA
	PRINCIPIOS DE REFRIGERACION Roy DOSSAT Editorial: CECSA – México

PLANIFICACION DE TRABAJOS PRACTICOS

1- TRABAJOS PRACTICOS A DESARROLLAR EN EL AULA

UNIDAD	DOCENTE	TRABAJO PRACTICO	CONTENIDO
Combustión Industrial	Ing. Fernández	Nº 1	Ecuaciones de la combustión completa de combustibles industriales. Exceso de aire.
Poder Calorífico	Ing. Fernández	Nº 2	Determinación del poder calorífico de combustibles industriales por métodos analíticos.
Triángulo de OSTWALD	Ing. Fernández	Nº 3	Cálculo, trazado y manejo del triángulo de OSWALD para distintos combustibles industriales.
Calderas	Ing Fernández	Nº 4 Nº 5	Selección de generadores de vapor humotubulares. Manejo de catálogos de distintos fabricantes. Cálculo del rendimiento térmico por el Método Directo.
Ciclo RANKINE	Ing. Galeana	Nº 6 Nº 7 Nº 8	Cálculo del rendimiento ciclo simple. Cálculo del rendimiento de un ciclo con sobrecalentamiento. Cálculo del rendimiento ciclo con recalentamiento.

		Nº 9	Cálculo del rendimiento ciclo con extracciones.
Ciclo BRAYTON	Ing. Galeana	Nº 10	Cálculo del rendimiento térmico de un ciclo BRAYTON simple de un solo eje.
Ciclo OTTO	Ing. Fernández	Nº 11	Número Octano Número Cetano
Ciclo Frigorífico	Ing. Galeana	Nº 12	Diseño y cálculo de una cámara frigorífica

2- TRABAJOS PRACTICOS A REALIZAR EN LABORATORIOS E INDUSTRIAS DEL MEDIO

UNIDAD	DOCENTE	FECHA	TRABAJO PRACTICO	CONTENIDO
Poder Calorífico de Combustibles	Ing. Fernández	23/03/09	Nº 1	Determinación del poder calorífico de combustibles industriales por métodos prácticos: Calorímetros. Práctica a realizar en la DETI de la Facultad de Ingeniería de la Universidad Nacional de Cuyo.
Análisis de Gases de Combustión	Ing. Fernández	06/04/09	Nº 2 Análisis de gases de combustión: aparato ORSAT. Práctica a realizar en el Instituto de Energía de la UTN – Facultad Regi Mendoza.	
Calderas	Ing. Fernández	15/06/09	Nº 3	Conocimiento de generadores de vapor humotubulares y sus partes constitutivas. Práctica a realizar en Centrales Térmicas Mendoza SA.
Tratamiento de Agua para Calderas	Ing. Galeana	04/05/09	Nº 4	Conocimiento de una planta para tratamiento de agua para calderas humotubulares. Práctica a realizar en Centrales Térmicas Mendoza SA.
Ciclo OTTO	Ing. Galeana	18/05/09	Nº 5	Conocimiento de motores ciclo OTTO y sus partes constitutivas. Banco de pruebas. Práctica a realizar en el taller de rectificaciones mecánicas de la firma Pérez Polo.
Ciclo DIESEL	Ing. Fernández	01/06/09	Nº 6	Conocimiento de motores ciclo DIESEL y sus partes constitutivas. Práctica a realizar en el taller mecánico

				de la Dirección Provincial de Vialidad.
Ciclo Frigorífico	Ing Galeana	15/06/09	Nº 7	Conocimiento de una cámara frigorífica, planta compresora y circuito frigorífico.Práctica a realizar en el establecimiento Frigorífico Aconcagua

INSTRUCTIVO PARA LA CONFECCION DE LA CARPETA DE TRABAJOS PRACTICOS

- En la Carpeta de Trabajos Prácticos debe incluirse el Programa Analítico y de Examen del año lectivo de cursado.
- 2. En la Carpeta de Trabajos Prácticos debe incluirse la Planificación de Cátedra correspondiente al año lectivo de cursado.
- La Carpeta de Trabajos Prácticos tendrá un Indice de Trabajos, en el cual debe constar la siguiente información:

PRACTICO	DESCRIPCION	EJERCICIO	HOJA	Vº Bº
Nro.		Nro.	Nro.	CATEDRA

PRACTICO Nro. : Se enumerará en orden correlativo cada Práctico realizado

DESCRIPCION: Se indicará el Título del Práctico

EJERCICIONº. Se enumerará en orden correlativo cada ejercicio realizado. HOJA Nro. Se indicará el número de hojas que corresponda a cada ejercicio

desarrollado.

- 4. En cada práctico se deberá incluir la documentación técnica (tablas, folletos, ábacos, etc), que el alumno usó para la resolución del ejercicio y la que la Cátedra le entregó para el desarrollo del tema.
- 5. La Carpeta de Trabajos Prácticos deberá entregarse debidamente encarpetada, no aceptándose hojas sueltas, u hojas colocadas en folios.
- 6. La resolución de todos los ejercicios prácticos deberá hacerse en PC, quedando a criterio del alumno el software a utilizar. En caso de que el alumno no pueda realizar los mismos mediante PC los ejercicios se harán a mano y en tinta. No se aceptarán Carpetas de Trabajos Prácticos presentadas de otra forma que no sea la indicada.
- 7. En caso de que los ejercicios sean realizados a mano se emplearán hojas cuadriculadas tamaño oficio o formato IRAM A4.
- Toda vez que se deba confeccionar un gráfico, ábaco, diagrama,...etc., estos se realizarán únicamente en papel milimetrado, o bien en hoja en blanco tamaño oficio o IRAM A4 en el caso de que el alumno decida utilizar PC.
- 9. En el caso en que se deban resolver ejercicios que utilicen un gráfico, ábaco, diagrama,...etc., se emplearán estos elementos por cada ejercicio a resolver.
- 10. El alumno podrá emplear todo método, que respetando siempre lo indicado, tienda a mejorar la calidad e interpretación del práctico realizado.
- 11. En cada hoja deberá incluirse el siguiente encabezado según se muestra a continuación:

MAQUINAS E INSTALACIONES TERMICAS

TRABAJO PRACTICO

TITULO DEL PRACTICO

NOMBRE ALUM	O
	••••

LEGAJO: HOJA Nro.:

La Carpeta de Trabajos Prácticos es un requisito más para la promoción o regularización de la materia. Toda carpeta presentada fuera de término no obtiene Boleta de Trabajos Prácticos, sin excepción.

<u>METODOLOGIA PARA LA EVALUACION DEL ALUMNO Y REGULARIZACION</u> DE LA ASIGNATURA

METODOLOGIA DE EVALUACION Y REGULARIZACION

La metodología para la evaluación del alumno y regularización de la asignatura se regirá de acuerdo a lo establecido en la Resolución Nº 137/1994, la cual establece entre otras cosas, los siguientes aspectos sobresalientes:

- La evaluación del rendimiento del alumno se hará mediante un sistema de evaluación continua, lo cual establece una metodología fundamental en el proceso de enseñanza aprendizaje.
- 2. Se enfatizará el período de cursado como etapa del aprendizaje frente al examen final.
- 3. Durante el desarrollo de la materia se tomarán tres (3) evaluaciones parciales, con sus correspondientes recuperatorios.
- 4. Los alumnos deberán aprobar el 100% de las evaluaciones para mantener la regularidad y acceder al examen final.
- 5. Los alumnos que hayan aprobado dos de las tres evaluaciones tendrán derecho a rendir un segundo recuperatorio de la evaluación no aprobada, pudiendo acceder, en caso de no aprobar este segundo recuperatorio parcial, a uno global, que la cátedra programará en la semana inmediata posterior a la finalización de las clases.
- 6. Los alumnos que no aprueben las evaluaciones parciales según lo establecido precedentemente, perderán la regularidad de la materia y deberán recursarla.
- 7. El ausente a las evaluaciones parciales será considerado como aplazo, de no mediar justificadas razones escritas y aprobación del Departamento.
- 8. El alumno no podrá tener dos ausentes en las evaluaciones parciales.

CONDICIONES PARA RENDIR LAS EVALUACIONES

- 1. para poder rendir las evaluaciones parciales el alumno deberá presentar la carpeta de trabajos prácticos en las fechas indicadas precedentemente.
- para poder rendir el recuperatorio global el alumno deberá tener la carpeta de trabajos prácticos aprobada en su totalidad.
- 3. en caso de que en las fechas indicadas para las evaluaciones parciales y la de sus correspondientes recuperatorios coincidiera con un dia de inactividad académica, las fechas se desplazaran siete (7) días corridos.

- 4. las evaluaciones parciales y los recuperatorios se tomaran en el aula donde normalmente se dicta la cátedra.
- 5. el horario para la toma de las evaluaciones parciales y los recuperatorios será en todos los casos el mismo que esta asignado para el dictado de la asignatura.
- 6. las evaluaciones parciales y sus recuperatorios serán escritos, pudiendo el alumno utilizar todo tipo de elementos de librería que considere conveniente.
- 7. las preguntas que se formularan en las evaluaciones parciales y sus recuperatorios serán de forma tal que el alumno solo deba responder mediante: a) esquemas de instalaciones; b) diagramas termodinámicos; c) curvas características de cada maquina; d) ábacos; e) gráficos y/o f) ecuaciones de rendimiento de maquinas e instalaciones térmicas, según corresponda.

PROGRAMA DE EXAMEN

	T	1	T
BBOLILLA	UNIDAD	UNIDAD	UNIDAD
Nº	TEMATICA	TEMATICA	TEMATICA
IN.	ILMATICA	ILMATICA	ILWATICA
1	1-A	2-A	3-A
•		- ^	J 7.
2	4-A	5-A	6-A
			_
3	7-A	8-A	9-A
	4.5		
4	1-B	2-B	3-B
F	4 D	<i>E</i> D	C D
5	4-B	5-B	6-B
6	6-C	7-B	8-B
0	0-0	1-D	0-0
7	9-B	1-C	2-C
•	3 5	'	
8	3-C	4-C	5-C
9	7-C	8-C	9-C
_	_		

FECHA, FIRMA Y ACLARACIÓN TITULAR DE CÁTEDRA

Ing. Jorge Félix Fernández