

Facultad de Ingeniería - Universidad Nacional de Cuyo PROGRAMA DE ASIGNATURA

Asignatura:	INSTRUMENTACIÓN Y CONTROL AUTOMÁTICO				
Carrera:	INGENIERÍA DE PETRÓLEOS-INDUSTRIAL				
Año:	2008	Semestral: 90 hs. S	Semanal: 6 hs.		

OBJETIVO Que el alumno frente a un proceso industrial, pueda identificar los elementos dinámicos que le permitan seleccionar la instrumentación de medición y control requerida para su automatización. Que conozca todas las aplicaciones que tienen el control automático y los elementos que están en juego en los lazos realimentados.

Unidad 1 - INTRODUCCIÓN AL CONTROL AUTOMÁTICO:

- A: La problemática del control automático.
- B: El lazo de control Terminología.
- C: La Transformada de Laplace.
- D: Función de Transferencia.
- E: Representaciones gráficas.
- **F:** Acciones básicas de control.
- G: Balances dinámicos de masa y energía en procesos de 1º orden, 2º orden y con tiempo muerto.
- H: Linealización
- I: Ejemplos de aplicación.

Unidad 2 - ANÁLISIS DINÁMICO DEL LAZO DE CONTROL:

- A: Oscilaciones Período natural de los sistemas.
- B: Análisis de los elementos dinámicos bajo la acción del controlador.
 - **B.1**: Tiempo muerto.
 - **B.2**: Capacitancia no autorregulada.
 - **B.3**: Capacitancia autorregulada.
- C: Efectos combinados de los elementos dinámicos.
 - **C.1**: Procesos con dos capacitancias.
 - C.2: Procesos con combinación de tiempo muerto y capacitancia.
 - **C.3:** Procesos multicapacitivos.

Unidad 3 - RESPUESTA EN EL DOMINIO DE FRECUENCIA:

- A: Función de transferencia en el dominio de frecuencia.
- **B:** Diagrama de Nyquist.
- C: Diagrama de Bode.
- D: Criterio de estabilidad de Nyquist.
- E: Diseño de los sistemas de control mediante análisis en lazo abierto.
- F: Métodos de ajuste en el dominio de la frecuencia.
- G: Criterio de estabilidad de Routh.
- H: Lugar de raíces.

Unidad 4 - ANÁLISIS EN EL ESPACIO DE ESTADO:

- A: Concepto de estado. Espacio de estados.
- B: Ecuación de estado.
- C: Solución de la ecuación de estado.
- **D:** Controlabilidad y observabilidad.
- **E:** Movimiento en el espacio de estado.
- **F:** Trayectorias y estabilidad.

Unidad 5 - OTROS SISTEMAS DE CONTROL:

- A: Control de Relación.
- B: Control en Cascada.
- C: Control de Avanacción.
- **D:** Control Óptimo.
- E: Control Difuso.

Unidad 6 - CONTROL DIGITAL:

- A: Controladores basados en microprocesador, introducción.
- **B**: Transformada Z y funciones de transferencias en lazos continuos y muestreados.
- C: Elementos de hardware.
- D: Elementos de software.
- E: Análisis del algoritmo PID digitalizado.
- F: Subrutinas complementarias.

Unidad 7 - AUTOMATISMOS CON CONTROLADORES LÓGICOS PROGRAMABLES (PLC):

- A: El Controlador Lógico Programable (PLC) introducción.
- B: Entradas / Salidas típicas, descripción.
- C: Elementos de hardware.
- D: Elementos de software, diagrama escalera, lógica de contactos.
- E: Temporizadores (a la conexión, a la desconexión), contadores.
- **F**: Generación de pulsos y modulación por ancho de pulso.
- G: Ejemplos y aplicaciones mas corrientes.

Unidad 8 - INSTRUMENTACIÓN DE PRESIÓN Y CAUDAL:

- **A:** Medición y transmisión de variables en un lazo de control realimentado, incidencia en el comportamiento del mismo.
- B: Medición y transmisión de presión absoluta, relativa y diferencial.
- **C:** Idem de caudal por medidores de área fija: placa orificio, Venturi, Tubo Pitot y Annubar.
- **D**: Medidores de caudal de turbina.
- E: Medidores de caudal magnéticos.
- F: Medidores de caudal másicos.

Unidad 9 - INSTRUMENTACIÓN DE TEMPERATURA Y NIVEL:

- **A:** Instrumentos de temperatura, particularidades en su med. y transmisión en un lazo de control realimentado, incidencia en el comportamiento del mismo.
- B: Termocuplas.
- C: Termorresistencias.
- **D:** Instrumentos de nivel, particularidades en su medición y transmisión en un lazo de control realimentado, incidencia en el comportamiento del mismo.
- E: Medidores de nivel por desplazamiento.
- F: Medidores de nivel por presión hidrostática y burbujeo.
- **G**: Medidores de nivel por ultrasonido.
- H: Otras variables de interés industrial.

Unidad 10 - ELEMENTOS DE ACCIÓN FINAL:

- A: Tipos de elementos de acción final. Válvulas de control.
- **B:** Tipos de cuerpos.
- C: Actuadores.
- **D**: Características inherentes y efectivas de las válvulas de control, su selección.
- E: Cálculo del CV.
- **F**: Selección del cuerpo.
- G: Posicionadores.

H: El variador de frecuencia para motores de CA tipo jaula de ardilla, componentes principales, configuración y campos de aplicación.

PROGRAMA DE EXAMEN:

Unidades
1 - 8
2 - 10
3 - 9
4 - 7
5 - 6
6 - 3
7 - 2
8 - 4
5 - 10

BIBLIOGRAFÍA

Bibliografía básica

Dibliografia basica							
				Ejemplares en			
Autor	Título	Editorial	Año	Biblioteca			
			1997	3			
Antonio Creus	Instrumentación Industrial	Marcombo	1989	3			
			1979	6			
C. Smith y	Control Automático de		1996	7			
A. Corripio	Procesos	Limusa	1985	1			
F:G: Shinskey	Process Control Systems	McGraw-Hill	1996	1			
			2003	4			
K. Ogata	Ingeniería de control Moderna	Prentice Hall	1993	2			
			1979	1			

Bibliografía complementaria

Autor E. Mandado	Título	Editorial	Año	Ejemplares en Biblioteca
Pérez y otros R. Piedrafita	Autómatas Programables Ingeniería de la	Thomson	2005	1
Moreno	Automatización	Alfaomega	2004 2002	5 5
A. Roca Cusidó	Control de Procesos	Alfaomega	1999	1
McNeil and Thro	Fuzzy Logic	Ap. Prof.	1994	1