

▶ 2015 AÑO DEL BICENTENARIO DEL CONGRESO DE LOS PUEBLOS LIBRES

Facultad de Ingeniería - Universidad Nacional de Cuyo P1- PROGRAMA DE ASIGNATURA				
Asignatura:	Concepción y Fabricación Asistida por Computadora			
Profesor Titular:				
Carrera:	Ingeniería en Mecatrónica			
Año: 2015	Semestre: 5	Horas Semestre: 90	Horas Semana: 6	

OBJETIVOS

Conocer las técnicas de concepción y fabricación empleadas en mecánica. Aplicar las herramientas informáticas para la concepción y la fabricación de sistemas mecánicos. Aprender metodologías de diseño y manufactura usando las técnicas y tecnologías CAD-CAM.

CONTENIDOS

UNIDAD 1: SKETCH

1.A- Entorno

Descripción del espacio. Uso del mouse. Guardar archivos.

1.B- Generación básica.

Entorno. Creación de perfiles. Línea, círculo, rectángulo, etc. Modificación, redondeo, chaflan, trim y extend. Restricciones, acotación.

UNIDAD 2 PART DESIGN:

2.A Características

Introducción – Paso de 2D a 3D. Extrusión, diferentes límites. Pocket. Revolución, shaft y Groove. Agujeros, nervios, ranuras, loft. Puntos, líneas y planos de referencia.

2. B- Dress up features.

Redondeo, chaflan, draft angle, vaciado. Roscas.

2.C- Transformation features

Traslación, rotación, simetría, espejo. Patrones: circular, rectangular. Operaciones booleanas.

UNIDAD 3 ASSEMBLY-CINEMATICA

3.A- Introducción

Definición. Herramientas para salvar ensambles. Restricciones de contacto, off set, paralelimso, etc. Análisis.

3.B Simulación

Módulo de simulación cinemática. Tipos de restricciones, rod, eje, planar, etc. Consideraciones para el movimiento. Simulación.

UNIDAD 4 DRAFTING

4.A- Drafting

Elaboración de un plano a partir de una parte. Formatos, rótulos, escalas. Generación de vistas. Cortes y detalles. Acotación, cortes. Símbolos

UNIDAD 5: - CONTROL NUMERICO COMPUTARIZADO

5.A- Modos de Mecanizado

Tipos de CNC. Modos de fresado. Facing, pocketing, contouring, Curve Following Modo de mecanizado axial: Drilling, Tapping, Boring, Reaming, T-Slotting, Circular Milling, Thread Milling

5.B- Herramientas

Herramientas de desbaste, de perforación, etc. Características.

Preparación para el mecanizado. Set up.

5.C- Mecanizado Básico

Facing, pocketing, profile contouring, drilled, curve following. Determinación de parámetros, velocidad de mecanizado, tipo de herramienta, caminos de mecanizado, avances, entrada y salida de herramienta. Etc.

5.D- Simulación y elaboración de programa CNC

Modos de simulación. Documentación NC. Generación de programa CNC. Trabajos prácticos en máquina CNC.

METODOLOGÍA DE ENSEÑANZA

Las clases son teórico prácticas, se utilizan recursos que ayuden a la comprensión por parte del alumno. Se utilizará el dictado de clase utilizando el soft proyectándolo sobre pantalla. Los alumnos serán guiados para la resolución de trabajos prácticas en su computadora. Todos los temas se practican en maquinas individuales. Se aplica la teoría para resolver situaciones reales con grado de dificultad en aumento. Estas prácticas son supervisadas por el Jefe de trabajos prácticos y siguen los lineamientos de la guía de trabajos prácticos. Se integran contenidos que el alumno debe poseer antes del cursado de Concepción y Fabricación Asistida por Ordenador, tales como Mecánica y Mecanismos y Sistemas de Representación y Dibujo.

Actividad	Carga horaria por semestre
Teoría y resolución de ejercicios simples	48
Formación práctica	
Formación Experimental – Laboratorio	12
Formación Experimental - Trabajo de campo	0
Resolución de problemas de ingeniería	0
Proyecto y diseño	0
Total	60

BIBLIOGRAFÍA

Bibliografía básica

Título	Autor(es)	Editorial	Año	Ej. Disponib.
Manual diseño Catia V5	Dassault Systems			Electrónico
Manual mecanizado Catia V5	Dassault Systems			Electrónico

EVALUACIONES

Evaluaciones parciales

Se tomarán dos evaluaciones parciales, cuya fecha está indicada en el cronograma. Para aprobar cada parcial se debe tener un mínimo de 60 pts (sobre 100 pts). La condición de regularidad es aprobar los dos parciales. Si el alumno reprueba uno de los dos parciales, se tomará una evaluación de recuperación de uno de ellos, se indicará la fecha en el cronograma. Si el alumno no aprueba el parcial en la etapa de recuperación, quedará libre. Es condición de regularidad la presentación de la carpeta de trabajos prácticos con todos los problemas resueltos al momento de rendir la última evaluación.

. Evaluaciones finales

Para los alumnos que cumplan el promedio de igual o más 60 pts en los dos parciales (sin el examen será de la siguiente forma. El examen final constará solamente de un tema práctico global.

BOLILLAS	UNIDADES
1	1-5-12-4
2	2 – 12 –9 -3
3	3 – 8 –10– 7
4	2 -11 - 6 -1
5	5 - 6 - 8 - 9
6	6 –11 –12 – 7
7	8 – 2 – 11 – 1
8	9 - 4 - 10 - 7
9	10-3-5-4

CRONOGRAMA DE ACTIVIDADES 2014

Semana	Contenidos Teóricos/Prácticos	Martes
1	Sketch. Introducción	11-mar
2	Perfiles	18-mar

▶ 2015 AÑO DEL BICENTENARIO DEL CONGRESO **DE LOS PUEBLOS LIBRES**

3	Part design	25-mar
4	Part design	31-mar
5	Dress up features	08-abr
6	Transformation features	15-abr
7	Parcial	22-abr
8	Assembly/Cinemática	29-abr
9	Drafting	06-may
10	Simulación	13-may
11	Simulación	20-may
12	CNC	27-may
13	CNC	03-jun
14	CNC	10-jun
15	Parcial	17-jun